본문으로 바로가기 메뉴 바로가기
Loading...

전체메뉴

연구성과

마이크로바이옴의 올바른 해석을 통한 건강한 세상 만들기, 이지놈이 시작합니다.

연구성과

게시물 검색
Selection and evaluation of bi-allelic autosomal SNP markers for paternity testing in Koreans썸네일
Genomics
INTERNATIONAL JOURNAL OF LEGAL MEDICINE 28 Apr 2021

Due to the advantages of single-nucleotide polymorphisms (SNPs) in forensic science, many forensic SNP panels have been developed. However, the existing SNP panels have a problem that they do not reflect allele frequencies in Koreans or the number of markers is not sufficient to perform paternity testing. Here, we filtered candidate SNPs from the Ansan-Ansung cohort data and selected 200 SNPs with high allele frequencies. To reduce the risk of false inclusion and false exclusion, we calculated likelihood ratios of alleged father-child pairs from simulated families when the alleged father is the true father, the close relative of the true father, and the random man. As a result, we estimated that 160 SNPs were needed to perform paternity testing. Furthermore, we performed validation using Twin-Family cohort data. When 160 selected SNPs were used to calculate the likelihood ratio, paternity and non-paternity were accurately distinguished. Our set of 160 SNPs could be useful for paternity testing in Koreans.

Abstract +
Towards complete and error-free genome assemblies of all vertebrate species썸네일
Genomics
NATURE 28 Apr 2021

High-quality and complete reference genome assemblies are fundamental for the application of genomics to biology, disease, and biodiversity conservation. However, such assemblies are available for only a few non-microbial species1,2,3,4. To address this issue, the international Genome 10K (G10K) consortium5,6 has worked over a five-year period to evaluate and develop cost-effective methods for assembling highly accurate and nearly complete reference genomes. Here we present lessons learned from generating assemblies for 16 species that represent six major vertebrate lineages. We confirm that long-read sequencing technologies are essential for maximizing genome quality, and that unresolved complex repeats and haplotype heterozygosity are major sources of assembly error when not handled correctly. Our assemblies correct substantial errors, add missing sequence in some of the best historical reference genomes, and reveal biological discoveries. These include the identification of many false gene duplications, increases in gene sizes, chromosome rearrangements that are specific to lineages, a repeated independent chromosome breakpoint in bat genomes, and a canonical GC-rich pattern in protein-coding genes and their regulatory regions. Adopting these lessons, we have embarked on the Vertebrate Genomes Project (VGP), an international effort to generate high-quality, complete reference genomes for all of the roughly 70,000 extant vertebrate species and to help to enable a new era of discovery across the life sciences.

Abstract +

전체메뉴