본문으로 바로가기 메뉴 바로가기
Loading...

전체메뉴

연구성과

마이크로바이옴의 올바른 해석을 통한 건강한 세상 만들기, 이지놈이 시작합니다.

연구성과

게시물 검색
Shared genetic etiology and antagonistic relationship of plasma renin activity and systolic blood pressure in a Korean cohorts썸네일
Genomics
Genomics 03 May 2022

Despite extensive studies on blood pressure, its genetic risk factors remain uncertain. Even one of the most researched blood pressure-related traits - renin - is not fully understood genetically. Here, we determine the genetic relationship and associated predisposition between blood pressure and baseline renin. In 8840 Korean individuals, we observed a strong negative genome-wide genetic correlation (rg = −0.484) between systolic blood pressure (SBP) and plasma renin activity (PRA), suggesting that antagonistic genetic signals explain the variance in the two traits. We found 51 significant pleiotropic SNPs affecting the two traits, which could contribute to the Renin-Angiotensin-Aldosterone System (RAAS). Our findings provide insight into studies on RAAS by identifying the genome-wide relationship and susceptibility loci of SBP and PRA.

Abstract +
Microbial Identification Using rRNA Operon Region: Database and Tool for Metataxonomics with Long-Read Sequence썸네일
Software
Microbiology spectrum 30 Mar 2022

Recent development of long-read sequencing platforms has enabled researchers to explore bacterial community structure through analysis of full-length 16S rRNA gene (∼1,500 bp) or 16S-ITS-23S rRNA operon region (∼4,300 bp), resulting in higher taxonomic resolution than short-read sequencing platforms. Despite the potential of long-read sequencing in metagenomics, resources and protocols for this technology are scarce. Here, we describe MIrROR, the database and analysis tool for metataxonomics using the bacterial 16S-ITS-23S rRNA operon region. We collected 16S-ITS-23S rRNA operon sequences extracted from bacterial genomes from NCBI GenBank and performed curation. A total of 97,781 16S-ITS-23S rRNA operon sequences covering 9,485 species from 43,653 genomes were obtained. For user convenience, we provide an analysis tool based on a mapping strategy that can be used for taxonomic profiling with MIrROR database. To benchmark MIrROR, we compared performance against publicly available databases and tool with mock communities and simulated data sets. Our platform showed promising results in terms of the number of species covered and the accuracy of classification. To encourage active 16S-ITS-23S rRNA operon analysis in the field, BLAST function and taxonomic profiling results with 16S-ITS-23S rRNA operon studies, which have been reported as BioProject on NCBI are provided. MIrROR (http://mirror.egnome.co.kr/) will be a useful platform for researchers who want to perform high-resolution metagenome analysis with a cost-effective sequencer such as MinION from Oxford Nanopore Technologies.

Abstract +

전체메뉴