본문으로 바로가기 메뉴 바로가기
Loading...

전체메뉴

연구성과

마이크로바이옴의 올바른 해석을 통한 건강한 세상 만들기, 이지놈이 시작합니다.

연구성과

게시물 검색
Widespread false gene gains caused by duplication errors in genome assemblies썸네일
Genomics
Genome biology 09 Apr 2021

False duplications in genome assemblies lead to false biological conclusions. We quantified false duplications in previous genome assemblies and their new counterparts of the same species (platypus, zebra finch, Anna’s hummingbird) generated by the Vertebrate Genomes Project (VGP). Whole genome alignments revealed that 4 to 16% of the sequences were falsely duplicated in the previous assemblies, impacting hundreds to thousands of genes. These led to overestimated gene family expansions. The main source of the false duplications was heterotype duplications, where the haplotype sequences were more divergent than other parts of the genome leading the assembly algorithms to classify them as separate genes or genomic regions. A minor source was sequencing errors. Although present in a smaller proportion, we observed false duplications remaining in the VGP assemblies that can be identified and purged. This study highlights the need for more advanced assembly methods that better separates haplotypes and sequence errors, and the need for cautious analyses on gene gains.

Abstract +
Genotyping-by-Sequencing of the regional Pacific abalone (Haliotis discus) genomes reveals population structures and patterns of gene flow썸네일
Genomics
PLOS ONE 07 Apr 2021

Continuous monitoring of the present genetic status is essential to preserve the genetic resource of wild populations. In this study, we sequenced regional Pacific abalone Haliotis discus samples from three different locations around the Korean peninsula to assess population structure, utilizing Genotyping-by-Sequencing (GBS) method. Using PstI enzyme for genome reduction, we demonstrated the resultant library represented the whole genome region with even spacing, and as a result 16,603 single nucleotide variants (SNVs) were produced. Genetic diversity and population structure were investigated using several methods, and a strong genetic heterogeneity was observed in the Korean abalone populations. Additionally, by comparison of the variant sets among population groups, we were able to discover 26 Korean abalone population-specific SNVs, potentially associated with phenotype differences. This is the first study demonstrating the feasibility of GBS for population genetic study on Hdiscus. Our results will provide valuable data for the genetic conservation and management of wild abalone populations in Korea and help future GBS studies on the marine mollusks.

Abstract +

전체메뉴